Getting started with embedded Rust

microcontrollers should be fun, actually
2024-10-14

Sandro Stikié¢

Table Of Contents 000000000000

1 PLEAIMDIE .ottt st 3
1.8 GOALS et et 4
2 HATAWATE ...ttt ettt 5
2.8 WAt YOUWIL TIEEA ..ottt 6
2.0 WIHTINE IE UD oottt s et s et eae st seanenes 7
2.C CATCUIL IAGTAITL .ottt s st ese st seaeeas 8
2.d DebUg Probe fITMIWALEc.c.oviiieiieireieeie ettt 9
3 SOFEWATE ..ottt 10
3.2 Library or frameWork? ..ottt 11
3D SELUP ettt 12
3.0 FLASI] ottt 13
3.0 DEDUE TE! ettt 14

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

1 Preamble

Goals

« Dip our toes into the embedded world
« Setup our breadboard

« Setup our Rust toolchain

« Program our microcontroller

Debug our program

GETTING STARTED WITH EMBEDDED RUST

0000000000000

microcontrollers should be fun, actually

2 Hardware

What you’ll need 0000000000000

« 2x Raspberry Pi Pico microcontroller with presoldered headers

» This is the microcontroller we’ll be programming—cheap, abundant, and powerful!
Breadboard

» Used to quickly prototype electronics projects

« Jumper wire kit

» Used to make connections in our breadboard
« DuPont wire kit (male to male, male to female, female to female)
» Used to make connections in our breadboard (cursed!)
Micro USB cable (power and data!)
» Used to power, debug, and flash our microcontroller

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

https://www.raspberrypi.com/products/raspberry-pi-pico/

Wiring it up 0000000000000

« We’re using two Picos in our breadboard

» The probe Pico is responsible for flashing and debugging and target Pico
« Connect the debug pins:

» Connect GP2 on the probe to SWCLK on the target
» Connect GP3 on the probe to SWDIO on the target
» Connect GND from the probe to the target
« Power the target via the probe:
» Connect VSYS on both the probe and target to the breadboard power rail
» Connect GND on both the probe and target to the breadboard ground rail

» Connect your computer to the probe via Micro USB

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

Circuit diagram 0000000000000

oo LAY 0o 00000000000
o e e o o e e e 0000000000
oo LAY 0o 00000000000
o e e o o e e e 0000000000
o e e 00000000000
. . . ® o 0 0 0 . . . oo . . . U
0 0 . oo 0 0 0 . . oo . . o e . . . oo 000 oo 00 0

+ You must use a common ground in your circuit
+ Powering another Pico via VSYS is fine, powering a thirsty peripheral via VSYS is not

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

Debug probe firmware 0000000000000

Download the official debug probe firmware
Press and hold the BOOTSEL button on the probe
While holding BOOTSEL down, connect the probe to your computer via Micro USB

» Ensure the USB cable supports power and data

You should see a new storage device mount called RPI-RP2, you can now release BOOTSEL
Copy picoprobe.uf2 to the RPI-RP2 storage device

The RPI-RP2 device should automatically unmount

Check the LED on the probe is lit, if so, the flashing succeeded!

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

https://github.com/raspberrypi/picoprobe/releases/download/picoprobe-cmsis-v1.02/picoprobe.uf2

3 Software

Library or framework? 0000000000000

« There’s two main options for working with the Pico in Rust:
» rp-hal

Abstraction over the RP2040 microcontroller, more akin to a library
- Your code is “tied” to the HAL
- Relatively easy to setup
- Supports stable or nightly Rust
» embassy
- Embedded application framework

Lots of board support, more abstract, easier to port’, async support!

Painful setup?, the interface is unstable
- Only supports nightly Rust

In practice, the nature of embedded devices means porting code is not straightforward
*The setup docs are incomplete and using embassy requires patching crates.io

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

https://github.com/rp-rs/rp-hal
https://embassy.dev/

Setup 0000000000000

o Install Nix:

curl --proto '=https' --tlsvl.2 -sSf -L https://install.determinate.
systems/nix | sh -s -- install

nix profile install nixpkgs#direnv

echo 'eval "$(direnv hook bash)"' >> ~/.bashrc

+ Clone the template®:

git clone https://github.com/opeik/rp2040-project-template
cd rp2040-project-template
nix environment loads automatically, wow!

*My fork adds Nix support and fixes the CPU halting when you start debugging

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

Flash it!

) cargo run
Finished "dev’ profile [optimized + debuginfo] target(s) in 0.17s
Running “probe-rs
Erasing v
Programming v
INFO Program start

- rp2040 project template:: cortex m rt main @ src/main.rs:27
INFO on!
- rp2040 project template:: cortex m rt main @ src/main.rs:68
INFO off!
- rp2040 project template:: cortex m rt main @ src/main.rs:71

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

Debug it! 0000000000000
« Open VSCode from the Nix shell:
code .

« Press F5, or click Run and Debug > Start Debugging
» That’s it!

GETTING STARTED WITH EMBEDDED RUST microcontrollers should be fun, actually

	Preamble
	Goals

	Hardware
	What you'll need
	Wiring it up
	Circuit diagram
	Debug probe firmware

	Software
	Library or framework?
	Setup
	Flash it!
	Debug it!

