

By Conrad Ludgate

Featuring very scary software mistakes,and even
scarier type signatures...

()

-

l¥hy do We use gust?

“Modern APIs, high-level features, and

C-speed”

“safety by default, generally not a pain to

write”

“It makes my friends think I'm smart”

“The crab is kinda cute tho...”

You use Rust because of the type
system.

()

But what iS a {ype SyStm?

The Oxford English Dictionary defines it as...

Thank you for visiting Oxford English
Dictionary

To continue reading, please sign in below or purchase a
subscription

But what iS a {ype SyStm?

The type system
categorises data.

The type system should
not make use sad.

‘They often do.

Payment handling

Are you sure your payments
are only executed once,and
that you don’t double-charge
your customers?

o~

Affine types

Payment lifecycle

Send request Process request Funds acquired

Your customer You handle the You take your
requests to purchasea request,and send the customers money.
product notification to the Happy days

bank

Because stuff always breaks, you stick
some retries here... oops... you just
charged your customer twice...

pub enum PaymentState {
Initiated,
Processed,
Completed,

impl PaymentState {
pub fn update(&mut self, event: Event) —> Result<()> {
match (self, event) {
(Self::Initiated, Event::Processed) = {
*self = Self::Processed;
acquire_funds();

}

(Self::Processed, Event::Funds) = {
*self = Self::Completed,

}

(_, _) = bail!("invalid event")

pub enum PaymentState {
Initiated,
Processed,
Completed,

impl PaymentState {
pub fn update(&mut self, event: Event) -> Result<()> {
match (self, event) {
(Self::Processed, Event::Processed) = {
*self = Self::Processed;
acquire_funds();
}

(Self::Initiated, Event::Processed) = {

0k(())

}

(Self::Processed, Event::Funds) = {
*self = Self::Completed,

}

(_, -) = bail!("invalid event")

The olufion i§ SimplE

Affine types Can only be used At most once

pub enum PaymentState {
Initiated(Initiated),
Processed(Processed),
Completed(Completed),

impl PaymentState {
pub fn update(self, event: Event) —> Result<Self> {
Ok(match self {
Self::Initiated(i) = Self::Processed(i.update(event)?),
Self::Processed(i) = Self::Completed(i.update(event)?),
Self::Completed(i) bail!("already completed"),

D)

impl Initiated {
fn update(self, event: Event) —> Result<Processed> {
match event {
Event::Processed = {
acquire_funds();
Processed

_ = bail!("can only go from initiated to processed")

pub enum PaymentState {
Initiated(Initiated),
Processed(Processed),
Completed(Completed),

impl PaymentState {

pub fn update(self, event: Event) —-> Result<Self> {

Ok(match self {
Self::Initiated(i)
Self::Processed(i)
Self::Completed(i)

D

impl Initiated {
fn update(self, event: Event)
match event {
Event::Processed = {
acquire_funds();
Processed

Self::Processed(i.update(event)?),
Self::Completed(i.update(event)?),
bail!("already completed"),

- Result<Processed> {

_ = bail!("can only go from initiated to processed")

goto fail

This is the name of a vulnerability in Apple Secure Transport CVE-2014-1266. This boiled down to the following code, which
validates the server’s signature on the key exchange:

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl. final(&hashCtx, &hashOut)) != 0)
goto fail;

The marked line was duplicated, likely accidentally during a merge. This meant the remaining part of the function (including the
actual signature validation) was unconditionally skipped.

http://www.slidescarnival.com/
http://unsplash.com/

impl State<ClientConnectionData> for ExpectCertificate {
fn handle(mut self: Box<Self>, cx: &mut ClientContext<'_>, m: Message) -> hs::NextStateOrError {

let cert_chain = require_handshake_msg!(
m,
HandshakeType:: Certificate,
HandshakePayload:: CertificateTls13

DR

self.transcript.add_message(&m);

let server_cert =
ServerCertDetails::new(cert_chain.convert(), cert_chain.get_end_entity_ocsp());

Ok(Box ::new(ExpectCertificateVerify {
config: self.config,
server_name: self.server_name,
randoms: self.randoms,
suite: self.suite,
transcript: self.transcript,
key_schedule: self.key_schedule,
server_cert,
client_auth: self.client_auth,

Algopithmic [ucidity

Are you safe from the q
ew Types

alg:none vulnerability? and
arker Types

@

Not Bven Hicrosoft iS Safe

It has been 36 days since the
last alg:none JWT
vulnerability.

An unauthenticated attacker could impersonate any user in SharePoint 2019 by using an alg:none
JWT for OAuth authentication.

Algorithm Lucidity -~

Algorithm Lucidity refers to resilience against algorithm confusion attacks.

This document aims to make it easy for PASETO implementations to achieve this property.

PASETO Cryptography Key Requirements -~

Cryptography keys in PASETO are defined as both the raw key material and its parameter choices, not just the raw key material.

PASETO implementations MUST enforce some logical separation between different key types; especially when the raw key material is
the same (i.e. a 256-bit opaque blob).

Arbitrary strings (or byte arrays, or equivalent language constructs) MUST NOT be accepted as a key in any PASETO library, UNLESS
it's an application-specific encoding that encapsulates both the key and an algorithm identifier. (For example, a k2. local PASERK))

In order to allow for key interoperability between different PASETO libraries, any PASETO library SHOULD support the local , public
and secret types from PASERK.

Algorithm Lucidity -~

Algorithm Lucidity refers to resilience against algorithm confusion attacks.

This document aims to make it easy for PASETO implementations to achieve this property.

PASETO Cryptography Key Requirements -~

Cryptography keys in PASETO are defined as both the raw key material and its parameter choices, not just the raw key material.

PASETO implementations MUST enforce some logical separation between different key types; especially when the raw key material is
the same (i.e. a 256-bit opaque blob).

Arbitrary strings (or byte arrays, or equivalent language constructs) MUST NOT be accepted as a key in any PASETO library, UNLESS
it's an application-specific encoding that encapsulates both the key and an algorithm identifier. (For example, a k2. local PASERK))

In order to allow for key interoperability between different PASETO libraries, any PASETO library SHOULD support the local , public
and secret types from PASERK.

class SymmetricKey extends Key {
public SymmetricKey(byte[] keyMaterial, Version version) {
super(keyMaterial, version);

public bool isKeyValidFor(Version v, Purpose p) {
return v = this.version & p = Purpose.PURPOSE_LOCAL;

if (!($key—>getProtocol() instanceof Versiond)) {
throw new InvalidVersionException(
'The given key is not intended for this version of PASETO.',
ExceptionCode :: WRONG_KEY_FOR_VERSION

i

pub struct V3;
pub struct vi;

impl<V, M> UnencryptedToken<V, M> {
pub fn encrypt(self, key: &SymmetricKey<V>)

—> Result<EncryptedToken<V>, PasetoError>

impl<V: version::Version> FromStr for EncryptedToken<V> {
type Err = PasetoError;

fn from_str(s: &str) - Result<Self, Self::Err> {

let s = s.strip_prefix(V::PASETO_HEADER).ok_or(PasetoError::InvalidToken)?;
let s = s.strip_prefix(".local.").ok_or(PasetoError::InvalidToken)?;

Tuging ComplE{ENESS

The type system is Turing
complete... I'm sorry... Turing completeness

use std::ops::Add;
use typenum:: {Integer, P3, Pu};

type X = <P3 as Add<P4>>::OQOutput;
assert_eq! (<X as Integer>::to_i32(), 7);

UInt<UInt<UInt<UInt<UInt<UTerm, B1>,
PInt<U29>; pub type N29 = NInt<U29>;
UInt<UInt<UInt<UInt<UInt<UTerm, B1>,
PInt<U30>; pub type N30 = NInt<U30>;
UInt<UInt<UInt<UInt<UInt<UTerm, B1>,
PInt<U31>; pub type N31 = NInt<U31>;
UInt<UInt<UInt<UInt<UInt<UInt<UTerm,

PInt<U32>; pub type N32 = NInt<U32>;
UInt<UInt<UInt<UInt<UInt<UInt<UTerm,
PInt<U33>; pub type N33 = NInt<U33>;
UInt<UInt<UInt<UInt<UInt<UInt<UTerm,
PInt<U34>; pub type N34 = NInt<U34>;

B1>,

B1>,

B1>,

B1>,

B1>,

impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1>
where

Ul: Add<Ur>,

Sum<Ul, Ur>: Add<B1l>,

type Output = UInt<Addl<Sum<Ul, Ur>>, BO>;

#H inline]
fn add(self, rhs: UInt<Ur, B1>) - Self::Output {
UInt {
msb: self.msb + rhs.msb + B1,
lsb: BO,

pub trait OutputSizeUser {
type OutputSize: ArraylLength<u8> + 'static;
}

pub type Output<T> = GenericArray<u8, <T as OutputSizeUser>::OutputSize>;

pub trait Digest: OutputSizeUser {
fn new() - Self;
fn update(&mut self, data: impl AsRef<[u8]>);
fn finalize(self) —> Output<Self>;

2-3 Tree Examples

Given a collection of three or more values, there are several 2-3 trees containing those values.
For instance, below are all four distinct 2-3 trees containing first 7 positive integers.

What iS a -3 tgEE?

It's a self-balancing tree
that has guaranteed
log(n) insertion and
retrieval lookup times

Each non-terminal node
pub struct Node<T, D: TreeDep must have at least 1 pivot,

B e and at least 2 children.

}

pub enum Pivots<T, D: Tree
~ ([(: <T, >,),]),
([(Child<T, D :

Step 2: A child-node

A terminal node’s
children are leaf objects
(using unit type here)

type ild<T, D> = <D as T pth<T>> :: Ch

impl<T> th<T> for U0 {

11 L(:();

A non-terminal node’s
children are more nodes

Ctep 3: A poot-nods

A terminal root-node can
have O pivots/children

A non-terminal
root-node is aregular
node

impl<T: Ord, U: TreeDepth<T, Child = Node<T, crate::Subl<U>>> + Subl> Insert<T> for Node<T, U>
where

crate::Subl<U>: TreeDepth<T>

Child<T, U>: Insert<T, Depth = crate::Subl<U>>,

type Depth = U;
fn insert(self, k: T) -> Result<InsertOverflow<Self, Split<T, Self::Depth>>, (Self, T)> {
let Self { pivots, tail } = self;
match pivots {
Pivots::One([x]) if k < x.1 = match x.0.insert(k) {
OKk(InsertOverflow::Same(x@)) = Ok(InsertOverflow::Same(Self {
pivots: Pivots::One([(x®, x.1)1),
tail,
1),
Ok(InsertOverflow::Overflow((l, p, r))) = Ok(InsertOverflow::Same(Self {
pivots: Pivots::Two([(l, p), (r, x.1)1),
tail,
1),
Err((x@, t)) = Err((
Self {
pivots: Pivots::One([(x®, x.1)1),
tail,

\

Any questions?

You can find me at @conradludgate in most places

